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nishing barycentric velocity and velocity gradients. Our generalization is compared with an analogous ap-
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Swanson et al. �Phys. Rev. Lett. 50, 190 �1983�� in rotating counterflow, and it is used to evaluate the vortex
density in plane Couette and Poiseuille flows of superfluid helium.
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I. INTRODUCTION

Many researches of quantum vortices in superfluids have
been carried out on rotating systems and counterflow situa-
tions, both of them with vanishing barycentric velocity
gradient.1–3 Evolution equations have been proposed to de-
scribe the influence of heat flux and of angular velocity on
the vortex dynamics4 generalizing the well-known Vinen’s
equation for nonrotating systems.1–3,5 An interesting chal-
lenge is to generalize these vortex evolution equations to
include the influence of barycentric flow, which has much
practical interest, for instance, in cryogenic applications.
Here, we carry out such a generalization and we examine a
recent proposal by Lipniacki,6 which opens an interesting
perspective but which, on the other side, discloses some as-
pects which have not been yet settled out with enough clar-
ity.

The aim of this paper is to generalize a previous equation
proposed for rotating counterflow superfluid turbulence4 by
emphasizing more explicitly the dynamical role of the rota-
tional of the superfluid velocity vs, related to quantized vor-
tices. This allows us to write a proposal for the evolution
equations of vortices in plane Couette and Poiseuille flows.
In Sec. III we review some aspects of rotating counterflow
and compare our generalized expression with Lipniacki’s
proposal,6 which underlines the role of the polarization rather
than of rot vs itself, and we stress some open problems. In
Sec. IV we use a thermodynamic formalism to relate the
dynamical equation for vortices with a new term appearing
in the mutual friction force, which we use for a comparison
with that one by Lipniacki. In Sec. V we discuss several
aspects of Couette and Poiseuille flows of superfluid helium
including the presence of quantized vortices.

II. ROTATIONAL OF SUPERFLUID VELOCITY AND THE
DYNAMICS OF VORTEX-LINE DENSITY

An evolution equation for the dynamics of quantum vor-
tices in rotating helium under counterflow was proposed in
Ref. 4 describing the influence of the heat flow and of angu-
lar velocity on the vortex-line density. In particular, the

vortex-line density L was assumed to obey the following
equation:

dL

dt
= − ��L2 + ��1V + �2

����L3/2 − ��1� + �4V��

�
�L ,

�2.1�

where �, �1, �2, �1, and �4 are dimensionless coefficients,
�=h /m is the quantum of vorticity �m the mass of the 4He
atom and h Planck’s constant�, V= �V� �with V=vn−vs� is the
counterflow velocity, the relative velocity between averaged
normal and superfluid velocities, which is proportional to the
heat flux across the system, and �= ��� is the angular veloc-
ity of the container. Equation �2.1� mainly refers to the ho-
mogeneous situation which is reached after some transient
time, otherwise a further term including vortex diffusion JL

has to be inserted. The right-hand side of Eq. �2.1�, the so-
called production term �L, reflects the variation of the vortex
length L inside the system caused by reconnections. The
original Vinen’s equation corresponds to the first two terms.
The other three terms incorporate the influence of the rota-
tion in the simplest dimensionally consistent combinations.
Terms in �1 and �2 reflect some competition between vortex
formation and vortex reduction, as seen when V=0. The last
coefficient expresses the interaction between rotation and
counterflow, which makes that both effects are not merely
additive. Its contribution could be interpreted by the fact that
rotation tends to orientate and straighten out the vortex line
along its direction, which makes unfavorable the existence of
vortex line orthogonal to V. The sign of the several param-
eters is obtained by comparison with experimental data.
Though apparently there are three new numerical coeffi-
cients, �1, �2, and �4, only one of them is actually indepen-
dent. Indeed, they are seen to satisfy the relations �4=�2�1
and �1=�2�2−2�, which are required on relatively general
arguments about the form of solutions. Their particular val-
ues were obtained in Ref. 4 by comparison with experimen-
tal data of Ref. 7. The values of the coefficients appearing in
Eq. �2.1� were independently calculated in Ref. 8 and agree
with those obtained in Ref. 4. When �=0, Eq. �2.1� reduces
to the well-known Vinen’s equation,5 with parameters �1 and
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� being, respectively, related to the production and destruc-
tion of vortices per unit volume and time.

In Refs. 4 and 9 it was shown that the value of coefficient
�1 depends on the angle between the counterflow velocity V
and Schwarz’s binormal vector I �Ref. 10� �see Eq. �3.6��. As

observed in Ref. 4 �1=�VI · V̂, with �V the coefficient ap-
pearing in Vinen’s equation �pure counterflow�.1 Schwarz de-
rived Vinen’s equation using the vortex filament model ob-
taining �V=�c1, where � is the well-known coefficient
appearing in the expression of the mutual friction force be-
tween vortex lines and the normal fluid and c1 denote the
average curvature of the tangle �see Eq. �3.7��. In Ref. 4 in

the regime of high rotation, the value I · V̂=1 /2 was found,
so indicating that the vortex tangle is highly polarized. Co-
efficient � is linked to the average squared curvature of the

vortices as ��=��̃c2
2, with c2

2 defined in Eq. �3.7� and �̃ the

vortex tension parameter, defined as �V=��s�̃, with �V the
energy per unit length of vortex line.1

Equation �2.1� lacks an important source of vorticity,
namely, a barycentric velocity gradient, which is known to
produce turbulence in many actual flows. Thus, it would be
useful to generalize Eq. �2.1� by incorporating in it barycen-
tric velocity gradients. A possible way to do so would be
simply adding new terms basing on dimensional analysis and
on comparison with the observed phenomenology. Instead of
proceeding in this way, we will interpret Eq. �2.1� in some
deeper terms, which will be useful for a consistent incorpo-
ration of the velocity gradient.

To generalize Eq. �2.1� we note that, in the particular case
of pure rotation, � is related to rot vs as 2�= �rot vs�, where
vs is the macroscopic superfluid velocity. As Lipniacki6

noted in a different proposal, writing an equation such as Eq.
�2.1� in terms of rot vs and V rather than in terms of � and V
would be more general, because it would reduce to Eq. �2.1�
for rotation, and it could be applied to other flows as plane
Couette or Poiseuille flows �see Sec. V�, where �rot vs�
=dvsx�z� /dz, x being the direction of the fluid motion, z the
direction orthogonal to the parallel plates, and vsx�z� the
macroscopical superfluid velocity, depending only on z.

The direct replacement of the quantity 2�= �rot vs� in the
Eq. �2.1� is not completely correct because whereas � is
taken as an externally fixed parameter in Eq. �2.1�, rot vs is a
dynamical quantity, which must be described by a suitable
evolution equation. To overcome the problem we have to
choose an evolution equation for the vortex-line density L
which includes a vortex density flux JL �Ref. 11�,

�L

�t
+ � · JL = �L, �2.2�

where �L stands for the production term generalizing the
right-hand side of Eq. �2.1�. Of course, the above equation
takes into account also the inhomogeneities in the line den-
sity L inside the system. The form of JL contains a convec-
tive contribution LvL, with vL the velocity of vortex lines
with respect to the laboratory frame, and a diffusive contri-
bution. In some situations, when the rate of variation of the
perturbations is higher than the reciprocal of the relaxation
time of the diffusive flux,11,12 one must take JL as an inde-

pendent variable.13 Here, neglecting the relaxation time of JL

and considering isothermal situations, we take for JL the fol-
lowing simple law, where the diffusive contribution is analo-
gous to Fick’s diffusion law:

JL = − D̃ � L + LvL. �2.3�

The coefficient D̃ �of the order of � �Refs. 11 and 12�� is the
diffusion coefficient of vortex lines.

The natural generalization of the production term �L in
Eq. �2.1� would be to rewrite it in terms of rot vs as

�L = − ��L2 + ��1V +
�2

�2
���rot vs��L3/2

− ��1

2
�rot vs� +

�4

�2
V��rot vs�

�
�L . �2.4�

Equation �2.4� reduces to the right-hand side of Eq. �2.1� for
pure rotation. Besides that, expressions �2.2� and �2.4� gen-
eralize Eq. �2.1� also on dynamical grounds. Note, indeed,
that in Eq. �2.1� it is assumed that �rot vs� is equal to 2�.
However, it will take some time for vs to get these values, by
starting after some arbitrary initial state. Then, the form �2.1�
will be useful after some transient interval, whereas Eqs.
�2.2� and �2.4� are expected to be valid also for fast changes
in vs. Further, Eq. �2.2� can be applied also in different situ-
ations, as plane Couette and Poiseuille flows. Thus, Eq. �2.2�
with �L expressed by Eq. �2.4� is the central point of this
paper, as it generalizes Eq. �2.1� both to a wider set of ex-
ternal conditions and to a wider domain of dynamical varia-
tions.

Comparison with a similar approach by Lipniacki6 will be
useful for a better understanding of both approaches.
Lipniacki6 has essentially proposed to use as variable the
so-called “polarity vector” �see also Ref. 14�, an important
quantity in vortex dynamics, which he linked to the rota-
tional of the averaged superfluid velocity

p = 	s�
 =
� s�d�

� d�

=
� 	 vs

�L
, �2.5�

averaged in a mesoscopic volume 
. We do not enter into the
specific details of this averaging, which may be found with
more depth in Ref. 15 through the proposal of a Gaussian
approximation for the distribution function of vortices. Note
that in the transient interval when the turbulence has not a
homogeneous distribution in the whole system, the polarity
vector p depends on the spatial position of 
 in the system.
On the other side, when the homogeneous situation is
reached, any volume 
 in the system can be assumed to have
the same polarity p �see Fig. 1�.15

Note that �p�� �0,1� measures the directional anisotropy
of the tangent to the vortex lines: in particular, �p�=1 for a
system of parallel vortices and �p�=0 for isotropic tangles.
Thus, it is possible to express Eq. �2.4� in terms of p and to
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group the terms in it in a slightly different way, namely, in
two groups, one of them with the factor VL3/2 and the other
one with kL2, mimicking in some way the form of the origi-
nal Vinen’s equation. In this way, we rewrite Eq. �2.4� as

�L = − ��L2�1 −
�2

�2�
��rot vs�

�L
+

�1

2�

�rot vs�
�L

�
+ �1VL3/2�1 −

�4

�2�1

��rot vs�
�L

� , �2.6�

so that, recalling �1=�2�2−2�, Eq. �2.2� assumes the more
compact form

�L

�t
+ � · JL = �L

= �1VL3/2�1 − A��p��

− ��L2�1 − ��p���1 − B��p�� , �2.7�

where B=
�1

2� and A=
�4

�2�1
. In Ref. 4 coefficient B was found

to be 0.89 while coefficient A is not properly a constant but
undergoes a small step from 1 to 1.004 at the first counter-
flow critical velocity Vc1. In this work, we neglect this step
assuming A=1. For totally unpolarized tangles, p=0 and Eq.
�2.7� reduces to Vinen’s equation. The polarization comes
from pinned vortex lines, which begin and end on the walls
of the container. In rotating containers, a part of the vortices
go from one end to the other of the system, more or less
parallel to the angular velocity vector. Near the walls, the
polarization is a little bit higher than in the bulk, because the
proportion of pinned vortices is higher, with respect to closed
loops, and Eq. �2.7� predicts a reduction in the rate of for-
mation and destruction of vortex lines, as compared with the
bulk.

For a general hydrodynamic description, the evolution
equations for vn and vs are needed. In particular, the evolu-
tion of vs is necessary to describe the evolution of rot vs in
Eq. �2.4�. A set of equations frequently used are the Hall-
Vinen-Bekarevich-Khalatnikov �HVBK� equations,1,16 which
in an inertial frame are written as

�n
�vn

�t
+ �n�vn · ��vn = −

�n

�
� pn − �sS � T + Fns + ��2vn,

�2.8�

�s
�vs

�t
+ �s�vs · ��vs = −

�s

�
� ps + �sS � T − Fns + �sT .

�2.9�

Here, pn and ps are effective pressures, defined as �pn=�p
+ ��s /2��V2, �ps=�p− ��n /2��V2, p the total pressure, S
the entropy, � the dynamic viscosity of the normal compo-
nent, and �sT the vortex tension force, which vanishes for
rectilinear vortices and for isotropic vortex tangles, but
which may be relevant in other situations. In the situations
considered in this paper, we will assume T=0.

To describe the motion we need an expression for Fns, the
mutual force between normal and superfluid components.
The usual expression by Hall, Vinen, Bekarevich, and
Khalatnikov1 can be written, in terms of the polarity p, as

Fns = ��s�L�p̂ 	 �p 	 �V − vi�� +
��

�
p̂ 	 �V − vi�� ,

�2.10�

with � and �� being friction coefficient depending on tem-
perature, and vi the “self-induced velocity,” which in the
HVBK equations is approximated by

vi = �̃ � 	 p̂ . �2.11�

The expression for Fns must be consistent with the dynamics
of L. In Sec. IV we will explore how Eq. �2.10� should be
modified in order to be consistent with the evolution Eq.
�2.7�, and in Sec. V we will combine the equations in an
analysis of plane Couette and Poiseuille flows in steady con-
ditions.

III. ROTATING COUNTERFLOW

In this section, we investigate the proposed Eq. �2.7� for a
rotating superfluid helium inside a cylindric container in the
absence and in presence of counterflow when the homoge-
neous situation is reached. In this case the vortex flux JL can
be neglected, so that any variation in L is linked to the pro-
duction term �L; further the polarity vector p can be approxi-
mately assumed having the same value over the whole sys-
tem, as pointed out below. Therefore, the only equation
needs to describe the homogeneous situation is the new evo-
lution Eq. �2.7� for L �with JL=0�.

Moreover, we compare some results of our proposal with
those of Lipniacki6 and with the experimental data of Swan-
son et al.7 These authors considered a rotating container
filled of helium II with an external counterflow V parallel to
the angular velocity � of the container. For high angular
velocities, they observed two critical counterflow velocities
Vc1 and Vc such that for 0�V�Vc, the line density L is
approximately independent on V, undergoing only a small
step �about 0.4%� at the first critical velocity Vc1, whereas for
VVc the line density L grows with V2. Here we will neglect

FIG. 1. When the stationary situation is reached, the polarization
p assumes the same value in each small volume 
 in the container:
�a� �p�=1 in pure rotation and �b� �p��1 in the combined situation
of rotation and counterflow.
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the small variation of L at the first critical velocity Vc1, be-
cause our proposal reduces to Eq. �2.1� in this situation—
which was already carried out in Ref. 4—and it is not nec-
essary for the comparison with Lipniacki’s proposal because
the latter is valid only for VVc.

A. Pure rotation

First of all, we consider the simplest situation of a cylin-
dric container rotating around its axis. It is known that when
the angular velocity � exceeds a critical value �c and the
stationary state is reached, vortex lines parallel to the rota-
tion axis are present whose number density follows the law
L=2� /�. The presence of these vortices may be explained
observing that when the container begins to rotate, the vis-
cous normal fluid rotates with it, whereas the superfluid re-
mains initially at rest, due to its vanishing viscosity. In this
situation, the difference between vn and vs is zero along the
rotation axis, but it is maximum near the walls of the con-
tainer, that is, the counterflow velocity increases for increas-
ing distance from the axis. In this way the remnant vortices,
which are formed during the cooling of helium and which
are pinned to the walls, are influenced by the counterflow
velocity. This implies the growth of these vortices in agree-
ment with the dynamical description proposed by Schwarz.
According to this idea, vortices will grow near the walls, due
to the relative velocity between normal and superfluid ve-
locities, and will migrate toward the bulk of the system,
forming in the stationary situation a regular array of vortices
parallel to the rotation axis.

The presence of vortices couples the normal fluid and the
superfluid through the mutual friction force so that vortices
are dragged by the normal fluid, and the average superfluid
velocity vs becomes different from zero. This fact justifies
the relation �	vs=2� and the substitution of 2� /�L= �p�
in Eq. �2.1�. At the light of the new arguments, in the case of
pure rotation the vortex-line density becomes L=2� /�,
which implies �p��1.

Consider now Eq. �2.7� in the case of pure rotation when
the stationary solution is reached, that is V= �	vn−vs
�0. In
this case Eq. �2.7� has two stationary solutions, �p�=1 and
�p�=1 /B2. As one can easily verify, the solution �p�=1 is
stable if B�1 and this is the case because the coefficient B
was found to be 0.89.4 To describe the nonstationary regime,
one needs to use Eqs. �2.8� and �2.9� for the averaged normal
and superfluid velocities.

B. Fast rotation and external counterflow

In this situation Eq. �2.7�, together with the HVBK equa-
tions, should be valid also in transient situation, even if nu-
merical simulation and experiments are needed.

In the hypothesis of coarse-grained adopted in this paper,
we can assume that, after some transient time, the vortex
tangle is homogeneous; this implies that the small volume 
,
used to define the polarity vector, has the property that it
does not depend on the position vector x �see Fig. 1�, so that
the value of p is approximately the same everywhere.

The polarity vector p is parallel to the direction of rotation
and external counterflow, and its modulus depends on the

counterflow velocity. Looking at the definition of the vector
p, one notes that �p�=1 for V�Vc, because L2� /�
�rot vs� in this situation, whereas �p��1 for V�Vc because
�rot vs�=2� and the vortex-line density is higher than 2� /�
�see Fig. 2�.

When the homogeneous situation in the system is
reached, Eq. �2.7� can be written as

dL

dt
= L3/2�1 − ��p����1V − ��L1/2�1 − B��p��� . �3.1�

The nonzero stationary solutions of Eq. �3.1� are

�p� = 1 �3.2a�

and

L1/2 =
�1

��
V + B��� 	 vs�

�
. �3.2b�

To study the stability of the solution �p�=1, we linearize Eq.
�3.1� for the perturbations. In the hypothesis that the pertur-
bation � does not modify the vorticity �� =rot vs, the relation
��p�=−��p� /L��L is obtained, which allows us to obtain the
following evolution equation for the perturbation �L

� ��L

�t
�

�p�=1
= � �1V

2L1/2 −
1

2
���1 − B�L��L . �3.3�

From the previous equation it follows that the solution �p�
=1 is stable for V less than

Vc =
�

�1
�1 − B���� 	 vs�� , �3.4�

which corresponds to the critical velocity Vc in the experi-
ments of Swanson et al.7 Note that if B=1 in Eq. �3.4�, the
critical counterflow velocity for which the straight vortex
lines parallel to the rotation axis become unstable is zero.
From an experimental point of view this is not the case be-
cause a nonvanishing critical velocity is observed, confirm-
ing the value, B=0.89�1, obtained in Ref. 4.

0.05 0.1 0.15 0.2
V2 �cm2�sec2�

2000

4000

6000

8000

10000

12000

14000

16000

L �cm�2�

0.2 Hz

0.4 Hz

0.6 Hz

0.8 Hz

1 Hz

FIG. 2. Comparison of the stationary solutions of Lipniacki’s
model �3.10� �dashed line� and Jou and Mongiovì’s model �2.7�
�black line� with the experimental data �solid circles� by Swanson et
al. for counterflow velocity bigger than the second critical velocity
Vc and angular velocities 0.2, 0.4, 0.6, 0.8, and 1 Hz. Lipniacki’s
model does not give the horizontal part of the plot, corresponding to
V�Vc.
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For counterflow velocity higher than the critical velocity
�3.4�, the solution �p�=1 becomes unstable, and the line den-
sity L assumes the value �3.2b� which depends on V and
�rot vs�.

Now, we consider the second term in the right-hand side

of Eq. �3.2b�, namely, B���	vs�
� . For low values of the coun-

terflow velocity, the vorticity is essentially due to the rota-
tion, and therefore we put ��	vs�=2�, recovering the re-
sults obtained in Ref. 4.

C. Comparison with Lipniacki’s proposal

Recently a hydrodynamical model of superfluid turbu-
lence was proposed by Lipniacki6 mainly with the aim to
studying the hydrodynamics of partially polarized tangles
arising in rotating counterflow or in plane Couette flow.
Thus, it is interesting to compare with his work, whose aims
are similar to ours.

Lipniacki writes Vinen’s equation as

dL

dt
= �L3/2c1��p��I · V − ��2c2

2��p��L2, �3.5�

where � is a constant of the order of � and � the friction
coefficient appearing in the expression of the mutual friction
force; I is the binormal vector,

I =
	s� 	 s�


	�s��

, �3.6�

defined by Schwarz10 to describe the polarization of the
binormal s�	s�, of the vortex lines, with s� and s� being the
first and second derivatives of the curve s��� describing a
vortex line with respect to the arc-length �, s� the unit tan-
gent along the line, and s� the curvature vector.

The coefficients c1 and c2
2 measure the average curvature

and curvature squared of the tangle, respectively. They are
given, according to the microscopic model by Schwarz,10 by

c1 =
1


L3/2� �s��d�, c2
2 =

1


L2� �s��2d� , �3.7�

where 
 is the volume on which one makes the averaging
indicated in Eq. �3.7�. Lipniacki proposes that c1 and c2

2 de-
pend on the polarization �p�, and that they vanish for com-
pletely polarized tangles because in this case, s�=0 for all the
vortex lines. To describe the reduction in c1 and c2

2 with
respect to its usual variable for a nonpolarized tangle, which
will be designed as c10 and c20

2 , respectively, he assumes that

c1��p�� � c10�1 − �p�2�, c2
2��p�� � c20

2 �1 − �p�2�2. �3.8�

In contrast, our expression �2.7� could be interpreted in this
perspective as

c1��p�� � c10�1 − ��p��, c2
2��p�� � c20

2 �1 − ��p���1 − B��p�� .

�3.9�

Therefore, it raises the question of the comparison of both
Eqs. �2.7� and �3.5� with the experimental data, and a deeper
understanding of the influence of polarity on the coefficients
c1 and c2

2.

The evolution equation for the vortex-line density L, pro-
posed by Lipniacki,6 has the explicit form

dL

dt
= �̃I0c10VL3/2�1 − �p�2� − �̃�c20

2 L2�1 − �p�2�2,

�3.10�

where I0=I · V̂, and the subscript 0 stands for independence
of I0 on V and L. The author chooses for I0 the same values
found in pure counterflow, in such a way to not consider the
anisotropy of the vortex tangle, which is present owing to the
high values of rotation considered in the experiments by
Swanson et al.7

Equation �3.10�, as the author remarks, does not describe
any of the two critical velocities, Vc1 or Vc, of the experi-
ments of Swanson et al.7 Lipniacki’s aim is instead to de-
scribe the relation between angular velocity, counterflow, and
line-length density for polarized tangles above the second
critical velocity Vc. This implies the need of a comparison, in
the uniform steady rotation and counterflow, between Eqs.
�2.7� and �3.10�, and the experimental data of Swanson et
al.7

The stationary solutions of the Eq. �3.10� are �p�=1
�which however is unstable� and

L =
LH

�1 − �L�/L�2�2 , �3.11�

where

LH = V2� c10I0

�c20
2 �2

and L� =
�rot vs�

�
=

2�

�
�3.12�

are the steady-state vortex-line density in pure counterflow
and in pure rotation, respectively.

In Fig. 2, we compare the results of Eqs. �2.7� and �3.10�
with the experimental data of the Fig. 2 of Swanson’s experi-
ments. It follows that Eq. �2.7� �black line� describes better
the experimental data �solid circle� than Eq. �3.10� �dashed
line�, not only for V�Vc, but it also yields the horizontal
branch of the results for V�Vc, which are not described by
Eq. �3.10�. Comparison with experimental data shows that in
the considered range of values of V and �, Eq. �2.7� fits
better the experimental results.

A reason for the difference between proposals �2.7� and
�3.10� could be related not to the evaluation of the integrals
in Eq. �3.7� but to a different microscopic interpretation of
some terms in the evolution equation for L. Schwarz’s
derivation10 is based on the dynamics of vortex breaking and
reconnection, and its production and destruction terms tend
to zero for completely polarized systems, as rightly pointed
out by Lipniacki. However, the origin of the rotational terms
in Eq. �2.1� could be completely different. It is known that in
rotating superfluid helium, the vortices grow near the walls
due to the rotation and drift toward the center of the system,
where they find a repulsion due to other vortices. These
forces are different from zero even for completely polarized
vortices, in contrast to the terms from Eq. �3.7�. It could then
be that the vanishing of the terms in Eq. �2.7� as 1−��p� had
a different physical origin than the vanishing proposal by
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Lipniacki from a different model. These open questions
stress the need of the inclusion of rotational effects in a more
general version of Schwarz’s derivation of Vinen’s equation.

IV. THERMODYNAMIC ANALYSIS OF POLARIZED
SUPERFLUID TURBULENCE

In this section, we will perform two modifications of the
expression of the mutual friction force, as used in the HVBK
model, which are necessary to incorporate the anisotropy of
the vortex tangle and to ensure the thermodynamic consis-
tency of the evolution equation for L and for vs, according to
the formalism of linear irreversible thermodynamics.9,17

Since Eq. �2.7� differs from the usual Vinen’s equation, it is
logical to ask how these modifications will change the form
of Fns. For the sake of simplicity, we will neglect here the
contribution of the self-induced velocity in Eq. �2.10�.

First, we will take into account the anisotropy of the
tangle introducing the tensor �=�s+�a, studied in Refs. 9
and 14:

�s �
3

2
	U − s�s�
, �a �

3

2

��

�
	W · s�
 . �4.1�

In this equation s� is the unit vector tangent to the vortex
lines, s�s� is the diadic product, U is the unit matrix, W is the
Ricci third-order tensor, and the angular brackets stand for
the average over vortex lines in a given volume. The tensor
�s describes the orientation of the tangents s� of the vortex
lines, and the tensor �a—associated to an axial vector—
describes the polarization; in other words, �a is related to
the first-order moment of the orientational distribution func-
tion of s� and �s is related to second-order moment. As
shown in Ref. 14, using tensor �, the mutual friction force
can be written as

Fns = − ��s�L
2

3
� · V . �4.2�

If we suppose isotropy in the tangle, it results �s=U, �a

=0 and one finds the usual expression

Fns = −
2

3
��s�LV . �4.3�

The tensor � in Eq. �4.2� allows one to deal under a same
formalism an array of parallel straight vortices as well as an
isotropic tangle, and also the intermediate situations.

Now, we follow the general lines of Refs. 9 and 18 to
propose a modification to Eq. �4.2� with the aim to determine
an evolution equation for vs consistent with Eq. �2.7�. Ac-
cording to the formalism of nonequilibrium thermodynamics
one may obtain evolution equations for vs and L by writing
dvs /dt and dL /dt in terms of their conjugate thermodynamic
forces −�sV and �V. The evolution Eq. �2.9� for vs, neglect-
ing inhomogeneous contributions of pressure, temperature,
and velocity, in an inertial frame, is written as

�s
dvs

dt
= − Fns = ��s�L

2

3
� · V . �4.4�

However, in the right-hand side of Eq. �4.2�, additional con-
tributions must be included to make Eq. �4.4� thermodynami-
cally consistent with Eq. �2.7�.

In a way similar to that presented in Ref. 9, we write
dvs /dt and dL /dt in matrix form in the system �4.5�. In it, we
write the equation for L in the form given in Eq. �2.7� and by
means of Onsager-Casimir reciprocity we obtain an addi-
tional contribution to the evolution equation for vs. The re-
sult is

�
dvs

dt

dL

dt
� = L� −

1

�s
��

2

3
� �

�1

�s
L1/2�1 − ��p��V̂

−
�1

�s
L1/2�1 − ��p��V̂ −

1

�V
L�1 − ��p���1 − B��p�� ��− �sV

�V
� . �4.5�

The sign ambiguity present in that equation comes in a natu-
ral way from the Onsager-Casimir reciprocity relation. In-
deed, in Feynman-Vinen view, L is a scalar quantity which
does not change under time reversal, unlike the superfluid
velocity vs which changes sign. According to Onsager-
Casimir, this leads to antisymmetry of crossed coefficients,
thus leading to the + sign. In Schwarz view, L possesses
vectorial properties and it would change on time reversal,
just like the superfluid velocity. This leads to the symmetry
of the kinetic coefficients in the matrix in Eq. �4.5�, i.e., to
the − sign in the upper right-hand term. Below, we will di-
rectly take the minus sign, for the sake of a more direct
comparison with the work by Lipniacki.

Therefore the equation for dvs /dt becomes

�s
dvs

dt
= ��s�L

2

3
� · V − �V�1L1/2�1 − ��p��V̂ . �4.6�

The new term not contained in the evolution Eq. �4.4� for vs
is the coupling term between dvs /dt and �V in the matrix in
Eq. �4.5�. Note that this term depends on the direction but
not on the modulus of V. This class of terms is called dry-
friction terms.

Observing that in the steady state �L, �rot vs�, and V con-
stant� the solutions of vortex-line density Eq. �2.7� can be
written as
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L1/2 =��rot vs�
�

, for 0 � V � Vc, �4.7�

L1/2 =
�1

��
�V − Vc� +��rot vs�

�
, for V � Vc, �4.8�

and substituting them in Eq. �4.6�, we obtain the following
expression for the coupling force

Fcoupl = − �V�1�L1/2 −��rot vs�
�

�V̂ = 0, for V � Vc,

�4.9�

Fcoupl = − �V�1�L1/2 −��rot vs�
�

�V̂

= �V
�1

��
�V − Vc�V̂, for V � Vc. �4.10�

As a consequence, for V�Vc the coupling force is absent �as
in pure rotation� while, for V�Vc, when the array of recti-
linear vortex lines becomes a disordered tangle, the addi-
tional term �4.9� appears. Indeed, in almost-steady state �L
and �rot vs� constant�, for V�Vc, Eq. �4.4� would be valid,
with L expressed by Eq. �4.7�, whereas, for V�Vc it would
become

dvs

dt
= ��L

2

3
� · V + �V

�1

���s
�V − Vc�V̂ , �4.11�

with L expressed by Eq. �4.8�. Summarizing, in steady states
for V�Vc the dry-friction force is absent, while it appears
for V�Vc, when the array of rectilinear vortex lines becomes
a disordered tangle. Thus Vc indicates the threshold not only
of the vortex-line dynamics but also of the friction acting on
the velocity vs itself; this seems logical, as both variables are
mutually related.

Summarizing, in this section we have proposed to substi-
tute the expression �4.3� of the mutual friction force used in
the HVBK model with

Fns = − ��s�L
2

3
� · V − �V�1L3/2�1 − ��p��V̂ �4.12�

for the sake of thermodynamic consistency with Eq. �2.7�.
To complete the comparison between Lipniacki’s and our

model, we analyze in both models the expression of the mu-
tual friction force, which in HVBK equation is expressed by
Eq. �2.10�, while in general terms it is expressed as

Fns = ��s�L	s� 	 �s� 	 �V − vi��
 + ���s�L	s� 	 �V − vi�
 .

�4.13�

Lipniacki neglects the coefficient �� in Eq. �4.13� and he
approaches the quantity 	s�	 �s�	V�
��	s�s�
−U�V=Iv
−V �where Iv= 	s��s� ·V�
� with

	s� 	 �s� 	 V�
 � p 	 �p 	 V� −
2

3
�1 − �p�2�V ,

�4.14�

and the quantity 	s�	 �s�	vi�
� �̃	s�	s�
= �̃c1L1/2I with

	s� 	 �s� 	 vi�
 � − �̃I0c10�1 − �p�2�L1/2V̂ . �4.15�

In explicit terms he uses

Fns = ���sL�p�p · V� − V
2 + �p�2

3
+ �I0c10�1 − �p�2�L1/2V̂� .

�4.16�

So in the work of Lipniacki, the tensor 2
3�s= 	U−s�s�
 as-

sumes the expression

2

3
�s � �U − pp� +

2

3
�1 − �p�2�U =

5 − 2�p�2

3
U − pp .

�4.17�

Note that Eq. �4.17� does not respect the relation trace�	U
−s�s�
�=2, following from the normalized character of s�, if
�p��1. In fact it is

trace�5 − 2�p�2

3
U − pp� = 5 − 3�p�2. �4.18�

The last term in Eq. �4.16� is a consequence of the drift of
the tangle in the direction of the counterflow, caused by its

anisotropy, where I= I0V̂. This term is substituted in our
model by the last term in Eq. �4.6�, which we can rewrite,

recalling that �V=�s��̃ and �1=�c10I0 as

Fcoupl = − �V�1L3/2�1 − ��p��V̂

= − �s��̃�c10I0L3/2�1 − ��p��V̂ . �4.19�

As it is seen, this term differs from the one of Lipniacki, in
the contribution due to the polarization of the tangle, which
in our approach depends on 1−��p�, and in Lipniacki’s one
on 1− �p�2. We note also that, in this interpretation, we must
choose the negative sign in the expression of this coupling
term, in agreement with the microscopic derivation of the
filament model by Schwarz.

Lipniacki does not consider the tension T. For a compari-
son with our work, we must observe that in Lipniacki’s
model, the quantity 	s�s�
 is approximated by pp, and this
approximation is correct only if most of the vortex lines in
the volume have the same direction.

In Ref. 14 we have provided a microscopic paramagnetic
analogy to relate p= 	s�
 with � and V, in the case of simul-
taneous counterflow and rotation, but we have not studied
the statistic of the curvature vector s�. In contrast, Lipniacki
leaves open the value of p and makes some simple hypoth-
eses about 	�s��
 and 	�s��2
 in his analysis of the possible
influence of polarization in the Vinen’s equation.

A further difference between our model and that of Lip-
niacki refers to the form of the vortex flux for which he
writes
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JL = LvL = L�vs + �p 	 V + ��I0c10�1 − �p�2�L1/2V̂

+ ��IkL
1/2� , �4.20�

where the vector Ik represents the curvature of �� s lines. This
last term is exactly zero if the vortex lines are closed, isotro-
pic of straight, and otherwise it is expected to be small, ex-
cept for the case when all the vortex lines are parallel to each
other but bent. This is only the convective contribution,
to which it should be added the diffusive contribution

JL=−D̃�L.

V. VORTEX-LINE DENSITY IN STEADY PLANE FLOWS

In the relation �2.4� �and Eq. �2.7�� we have rewritten the
right-hand side of Eq. �2.1� for rotating counterflow turbu-
lence in liquid helium in terms of �rot vs�. For pure rotation,
�rot vs�=2� and we just have our original equation, but Eq.
�2.4� may be also used to describe situations with barycentric
motion as plane Couette and Poiseuille flows �without exter-
nal heat flux� between two parallel plates. Here we will con-
sider two plates separated by a distance D, one at rest and the
other one moving at velocity V0 �Couette flow�, or plane
Poiseuille flow, given by a longitudinal pressure gradient
along the direction of two parallel quiescent walls. Here, we
will deal with steady states and quasistationary states. We
will assume that the flow of the normal component remains
laminar. This requires that the Reynolds number DV0 /�,
with � as the viscosity of the normal component and V0 the
characteristic velocity of flow, is sufficiently small. On the
other side, in analogy with the rotating container, we assume
that the velocity V0 is sufficiently high to neglect the “effects
of the walls.”19 The essential problem in both cases is to find
the distribution of the superfluid velocity, the vortex density
and the mutual friction force. We will focus our attention
mainly to steady-state situations, as simple illustration of the
changes implied by the new Eqs. �2.7� and �4.6�, for L and
vs.

A. Plane Couette flow

We assume two plane surfaces at z=0 and z=D such that
the second one moves parallel to the first one at the velocity
V0, and that the relative velocity between normal and super-
fluid velocities has a profile V= �Vx�z� ,0 ,0�. The dynamics
of vortex formation is similar to that in the rotating cylinder.
When the upper plate starts suddenly moving with respect to
the lower plate, the normal component starts moving under
the action of the viscous force and nonslip condition,
whereas the superfluid component will remain initially insen-
sitive to the motion of the plate. Thus, a relative velocity �the
counterflow velocity� V=vn−vs will arise between the two
components. This counterflow velocity V depends on the dis-
tance from the lower plate, in particular V is maximum for
z=D �upper plate� and zero for z=0 �lower plate�.

When the counterflow velocity reaches a critical value
near the moving plane, the remnant vortices, always present
in He II, begin to lengthen and reconnect to form other vor-
tices, which diffuse toward the lower plate �at rest� forming,
in the stationary situation, an array of vortices parallel to

each other and to the plates and orthogonal to the flow.
Through the vortices, the normal and the superfluid compo-
nents become coupled by the mutual friction force Fns, and
the superfluid will tend to match its velocity with that of the
normal fluid �V→0�; this will introduce a rot vs�0 in the
superfluid, expressed by ��vs /�z�. After a sufficiently long
time, it is expected that a steady shear flow will have formed,
with vn=vs depending only on z and having the x direction
and such that �vn /�z=�vs /�z=V0 /D, corresponding to the
physical Newtonian linear profile, which follows from Eqs.
�2.8� and �2.9� with vanishing tension force T=0, and Eq.
�4.12� in which Fns=0 for V=0 and �p�=1. Then, it results
�rot vs�=V0 /D.

Introduction of this value in Eq. �2.4� would give the areal
density of parallel and straight vortex lines, perpendicular to
the flow. However, as it has been said in Sec. II, the replace-
ment of � in terms of rot vs is deeper than a formal substi-
tution because vs will not become related to the gradient of
the barycentric velocity until a complex transient process has
lapsed. Thus, the direct replacement of 2� in Eq. �2.1� by
dvsx /dz in shear flows, with vsx the x component of the mac-
roscopic superfluid velocity, will be valid for steady states
and for relatively slow variations with respect to steady
states. Otherwise, rot vs with its own nontrivial dynamics
should be considered in Eq. �2.4�. The situation of Couette
flow may be rather illustrative of these features.

Then, the dynamics of L in this case is described by

dL

dt
= − ��L2 + ��1V + �2��

2
� �vs

�z
��L3/2 − ��1

2
� �vs

�z
�

+ �4V� 1

2�
� �vs

�z
��L − � · JL, �5.1�

where the coefficients should obey the relations indicated
below Eq. �2.1�, and where the last term stands for the effects
of the vortex flux for inhomogeneous systems.

In the stationary situation V0 and, according to Eq.
�5.1�, there will be a completely polarized array of vortices,
perpendicular to the velocity and to the velocity gradient,
with uniform areal density given by

L =
1

�
� �vs

�z
� =

V0

�D
. �5.2�

In this view, the stationary character of L would require V to
be zero, in such a way that normal fluid, superfluid, and
vortices would move at the same speed and without internal
friction. However, Eq. �5.1� has the intrinsic feature that for
V less than a value Vc, the vortex-line density does not de-
pend on V and is given by Eq. �5.2�. This critical relative
velocity is, according to Eq. �5.1�,

Vc =
�

�1
�2

�4

�1
−

�2

�
���

2
� �vs

�z
� � c���

2
� �vs

�z
� ,

�5.3�

with c�3.7, according to the values of the coefficients used
in Eq. �2.1� to describe the value of Vc in rotating counter-
flow velocity.
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This indicates that the ordered array of vortices formed in
the Couette flow is stable until V�Vc. This means that, as V0
grows, the regular array of rectilinear vortices, orthogonal to
V0, is still present and the velocities vn, vs, and V have rec-
tilinear profiles, but with slightly different slope. The value
of V is maximum near the plane z=D. When the counterflow
velocity V reaches the critical value Vc, the regular Couette
array of vortices becomes unstable and a disordered tangle of
vortex lines appears between the two plates in the zone. If
one did not apply Eq. �2.1�, but only intuitive reasoning
without the detailed quantitative analysis showing this criti-
cal velocity, one would expect that for V�0, there will al-
ways be a disordered tangle of vortices.

B. Plane Poiseuille flow

Equation �5.1� may be applied to plane Poiseuille flow
between two quiescent parallel walls at z= �D /2, driven by
a longitudinal pressure gradient. The steady velocity profile
for a Newtonian viscous fluid is parabolic, and has the form

Vx�z� =
�p

2�l
�D2

4
− z2� =

�p

�l

D2

8
�1 −

4z2

D2 � = Vmax�1 −
4z2

D2 � ,

�5.4�

with �p
l the pressure gradient, � the viscosity, and Vmax

= �D2�p� / �8�l�. The pressure gradient acts on each compo-
nent in the proportion established by the HVBK Eqs. �2.8�
and �2.9�.

Initially, the velocity profile of the normal component,
submitted to viscous effects and to no-slip conditions on the
walls, will be rather different from that of the superfluid
component, which may slip freely along the walls �see Fig.
3�a��. As a useful simplification, one may approximate the
velocity profiles as a parabolic �Poiseuille profile� and a flat
profile, respectively,20 which equals one to each other in two
points at the distance z0 from the center of the plates. Then,
one must search how these profiles will evolve under their
mutual interaction due to the friction force, caused by the
presence of the vortices.

During the transient regime, vortices will be produced
mainly in the regions where the relative velocity V is higher
than a critical value Vc—which may be also the central
region—but they will be transferred to the matching region
where vn=vs because of the second term in expression �2.10�
for the mutual friction force, which is a Magnus force yield-
ing a vortex lateral drift velocity described by vL�lateraldrift�
=��s�	V. The accumulation of vortices in the region where
the two fluids have the same velocity will enlarge the width
of the matching region �the profile of vs tends to the profile
of vn�, until arriving at a situation where V will be lower than
Vc so that not more vortices will be produced. The steady
profile will have the approximate form of Fig. 3�b�, similar
to that considered by Samuels �Fig. 7 of Ref. 21�, but in the
matching region vn and vs are not exactly equal, in contrast
with Couette flow or rotating cylinder, because there is need
of a friction force to cancel out the term in the pressure
gradient in the HVBK equations, as shown in Eq. �5.6� be-
low.

In the steady state, for isothermal flow, and neglecting the
tension T, which vanishes for rectilinear vortices and for
isotropic tangles, Eqs. �2.8� and �2.9� reduce to

−
�n

�
� pn + Fns + ��2vn = 0, �5.5�

−
�s

�
� ps − Fns = 0. �5.6�

By adding these equations one obtains −�p+��2vn=0,
which shows that the velocity profile of the normal compo-
nent is the usual one corresponding to the motion it would
have by itself, without the interaction with the superfluid
unless some contributions with T�0 would appear, in the
form, for instance, of local anisotropy vortex tangles. On the
other side, from Eq. �5.6� it is seen that Fns will be different
from zero, given by Fns=−

�s

� �ps. Thus, vn and vs will be
slightly different, if �p is low enough, and there will be an
array of straight vortices, which we calculate below.

The most relevant features of the steady profile are: the
width 2zc of the central zone without vortices and flat vs
profile, the width zw of the boundary layer also without vor-

tices and flat vs profile, and L̄, the averaged vortex density in
the matching zone where vortices concentrate. We will com-
pute them from simple qualitative arguments.

To compute zc and zw we will ask that the corresponding
circulation of Vns in these regions is lower than the vorticity
quantum �. This is a sufficient condition for the lack of vor-
tices in this zone. The argument is similar to that which
could be used to estimate the critical angular velocity for the
formation of the first vortex line in a rotating cylinder. If the
cylinder is rotating with angular speed �, the circulation of
V will be 2�R2�; to obtain �c one equates this quantity to �,
and one gets �c=� / �2�R2�. The exact result is �c
=� ln�b /a0� / �2�R2� �Ref. 1�, with a0 the radius of the vortex
line and b a distance of the order of the line spacing, which
in the case of the one vortex is of the order of the radius R of

vs

vn

vs

vn

(a)

(b)

FIG. 3. �a� Initial profile and �b� steady profile of the superfluid
�continuous line� and normal velocities �dashed line�.
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the cylinder. In the plane Poiseuille flow situation the quan-
tity b is of the order zc, in the central zone, and of the order
zw, in the boundary layer zone.

Thus, to estimate zc we calculate the circulation of Vns

= �p
2�l �zc

2−z2� in the zone between z=0 and z=zc and equate it
to � ln�b /a0�. One has

�c = �
�

Vns · dl = − �
0

zc �� �p

2�l
�zc

2 − z2���
z=0

dx

=
�p

2�l
zc

3  � ln�czc/a0� , �5.7�

where � is the contour of the square whose side is zc and c is
a numerical constant of the order of the unity. This may be
expressed in terms of the maximum velocity Vmax of vn as
given by Eq. �5.4�, leading to expression

zc
3

D3 =
� ln�czc/a0�

4DVmax
. �5.8�

Concerning the width of the boundary layer zw, a similar
argument yields

�w = �
�1

Vns · dl = �
0

zw �� �p

2�l
��D

2
− zw�2

− z2���
z=D/2

dx

=
�p

2�l
�Dzw

2 − zw
3 �  � ln�c�zw/a0� , �5.9�

where �1 is the contour of the square whose side is zw and c�
is a numerical constant of the order of the unity. Up to sec-
ond order in zw, this yields

�p

2�l
Dzw

2 = � ln�c�zw/a0� , �5.10�

and using expression �5.4� for the vn profile, the previous
expression may be rewritten in terms of Vmax as

zw
2

D2 =
� ln�c�zw/a0�

4DVmax
. �5.11�

This expression is similar to the one obtained by Samuels21

for the width of the outer layer in a cylindrical Poiseuille
flow in a tube of diameter D �his Eq. �15��, which was

� rc

D
�2

=
�

8�DVmax
ln�8rc

a0
� . �5.12�

From Eqs. �5.8� and �5.11� it is found that the widths zc and
zw decrease for increasing Vmax as zc�Vmax

−1/3 and zw�Vmax
−1/2.

Thus for increasing Vmax �i.e., increasing pressure gradient�
the central zone and the outer zone-boundary layers free of
vortices will become thinner. The flat profile of vs in these
zones is consistent with the absence of vortices, according to
the relation L= ��vs /�z� /�, analogous to the expression �5.2�,
and which vanishes for flat profile.

In the matching region the value of vn−vs will not be
strictly zero, but because of restriction �5.6� if vn−vs is ap-
proximately constant in this region, one will have that

L�z� =
1

�
� �vs

�z
� 

1

�
� �vn

�z
� =

8Vmax

�D2 �z� . �5.13�

It is known that there exist two values of z where the veloci-
ties, vn and vs, are equal, but, in general, in the rest of the z
domain they could not be exactly equal. This implies that the
mutual friction force could depend on z and that the distri-
bution of the vortices could be inhomogeneous. To overcome
this problem, we average the value of L in the region be-

tween z=zc and z=z1=D /2−zw. Of course, the value of L̄ in
the region between z=−z1=−D /2+zw and z=−zc will be the
same of the first region by symmetry. To estimate, we as-
sume that the averaged profile of the superfluid velocity can
be approximated by the profile of the normal velocity, so
obtaining

L̄ =
8Vmax

�D2 � zc − z1

2
� =

2Vmax

�D
�1 + 2� zc

D
−

zw

D
�� .

�5.14�

Introducing zc and zw as obtained from Eqs. �5.8� and �5.11�
we would have an estimate of L̄ in terms of Vmax, or, equiva-
lently, in terms of �p. A more detailed analysis could be
carried out from the transversal terms of the vortex flux,
where the Magnus drift and the diffusion flux in Eq. �2.3�
would cancel each other.

Expression �5.8� may be used to obtain the conditions for
a laminar flow without any vortex. This situation will be
found when the width of the central zone without vortices zc
is bigger than D /2. This leads to the condition DVmax /�
�2 ln�D / �2a0��. For D10−2 m, and since a010−10 m,
we have DVmax /��20. The dimensionless quantity DVmax /�
is analogous to the Reynolds number. In viscous fluid, the
Reynolds number is defined as DV /�, with � being the kine-
matic viscosity �=� /�, which has dimensions m2 s−1. The
vorticity quantum � has also dimension m2 s−1 and therefore
DVmax /� may be considered as a quantum Reynolds number.
A similar number has been used in pure counterflow experi-
ments in cylindrical containers of diameter D where, for in-
stance, the appearance of the first vortex takes place at T
=1.7 K for DV /�80.22 A more rigorous stability analysis
would be convenient to obtain more values of the critical
quantum Reynolds number in both situations.

VI. CONCLUSIONS

The quantized character of vorticity in superfluids empha-
sizes the special importance of vortex lines, whose dynamics
becomes a central aspect of rotating or turbulent flows of
superfluids. The main proposal of this paper is Eq. �2.4� for
the evolution of vortex-line density, which generalizes our
previous proposal �2.1� for rotating counterflow situations.
Here, by writing the local average rotational of the superfluid
component instead of the angular velocity, we have enlarged
the set of applications of the theory in two main aspects. One
of them is that Eq. �2.4�, in contrast to Eq. �2.1�, may be
applied not only to rotation but also to shear flows, as illus-
trated in Sec. V. The second enlargement is of dynamical
nature: in Eq. �2.4� rot vs appears, and vs itself should satisfy
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its own evolution equation, which is coupled to the evolution
of vn, the velocity of the normal component. Then, Eq. �2.4�
becomes deeply coupled to the HVBK Eqs. �2.8� and �2.9�
for vn and vs not only through the mutual force Fns between
the normal and the superfluid components, which requires
the knowledge of L, but also because in Eq. �2.4�, vs is
needed to obtain L. Thus, the coupling of these equations is
much emphasized in Eq. �2.4� as compared to Eq. �2.1�.

For situations close to nonequilibrium steady states or for
slow variations of vs, in such a way that rot vs is well de-
scribed by the angular velocity or by the barycentric velocity
gradient, Eqs. �2.1� or �5.1� describe the vortex-line density
in terms of � or dvsx /dz. In each case we have provided an
estimation of the vortex density and of the superfluid veloc-
ity profile in the steady state.

We have compared our proposal with that of Lipniacki,
which shares the objectives of the present paper but stresses
the polarization p=rot vs /kL more than rot vs itself. Lipniac-
ki’s evolution equation for L is, essentially, the classical Vin-
en’s equation, but with the new aspect that its coefficients
become dependent on the polarization p. The disagreement
between our Eq. �2.7� and the Lipniacki’s proposal �3.10�
may be due to the different physical origin of the terms de-
pendent on the polarization. Our opinion is that Schwarz
derivation of Vinen’s Eq. �3.5� does not include some rel-
evant contributions of rotational systems. For straight paral-
lel vortices, as those arising in pure rotation experiments,
both the production and the destruction terms vanish. This is
consistent with Schwarz’s postulates for the vortices, but in
purely rotational flows the dynamics of vortices has a differ-
ent origin, related to the migration of vortices formed on the
wall toward the center of the system, and with repulsion
forces among vortices. Thus a general treatment would re-
quire to include these effects besides the Scharwz effects in
Eq. �3.5�, and it could provide a further understanding of the
differences between Eqs. �2.7� and �3.10�. In any case, com-
parison with experimental results in Fig. 2 indicates that Eq.
�2.7� yields a better description of them.

Another interesting example which draws the attention is
the situation proposed in the paper by Eltsov et al.23 There
the authors report experimental, numerical, and theoretical
studies on the propagation of a vortex front in a vortex-free
region filled by rotating superfluid 3He-B. After creating a
vortex-free Landau state, where the superfluid component is
at rest and the normal component moves with the rigid rota-
tion �, they inject a seed vortex into the sample observing a
rapid local evolution of the vorticity toward the equilibrium
state �a regular array of vortices parallel to the rotation axis�.
This phenomenon could be explained in a qualitative way as
follows: in the free-vortex region, the relative velocity V
between normal and superfluid components is nonzero and it

is orthogonal to the rotation axis whereas the mutual friction
is zero because of the absence of vortices. The presence of
vortices coupled the two components so a mutual friction
force Fns arises. Analyzing the general expression �4.13� of
the mutual friction force onto the boundary between the
vortex-free and the vortex states, we observe that the first
term refers to the torsion of the tangle whereas the second is
parallel to the direction of vortices wave �see Fig. 1 of his
work�. From Eq. �2.9�, or Eq. �4.11�, we deduce that the
presence of the mutual friction force moves the superfluid
component in such a way that the two components couple
and the vorticity rot vs becomes non-null.

This change in the state of 3He-B from free-vortex state to
vortex state is also described by the production term of Eq.
�2.7� or �2.1�, when a seed of vortex is inserted in the
sample: in the vortex-free Landau state, the relative velocity
is not zero, so the production term has two stable solutions,
L=0 and p=1 �or L=2� /��,4 which are both admissible.
The injection of a vortex in the cylinder allows the system to
change from L=0 to L=2� /�, after some transient regime.
Of course, dynamical equations for vn, vs, and L �Eq. �2.7��
are needed for a complete dynamical description of the vor-
tex tangle propagation.

After the propagation of the crest of vortices inside the
cylinder, a homogeneous situation is reached. There, the po-
larity vector is uniformly distributed over the sample but it is
not exactly 1. This behavior is caused by the fact that in this
situation the relative velocity between superfluid and normal
component is not exactly zero, that is, vn−vs�0. When, in-
stead, the steady state is reached the relative velocity V is
zero so that the stationary solution will be p=1, i.e., L
=2� /�, as in a classical rotating helium II. The propagation
of vortex fronts and the prediction of their speed of propa-
gation could be an interesting physical situation to check in
the future the merits of generalized equations for vortex dy-
namics.
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